Вообще-то, если вы знаете, как правильно использовать WolframAlpha, то у вас навряд ли возникнет необходимость прибегать к использованию степенных рядов для приближенных вычислений: механизм приближенных вычислений встроен в Вольфрам Альфа по умолчанию (как, впрочем, и в любой карманный калькулятор). Однако, систему WolframAlpha довольно удобно использовать, когда нужно без лишних усилий проиллюстрировать, как именно выполняются приближенные вычисления при помощи степенных рядов.
Ранее было рассмотрено, как разложить функцию в степенной ряд. Разложение функций в ряд нам понадобится, чтобы продемонстрировать, как выполняются приближенные вычисления значений функций с помощью степенных рядов.
Далее понадобится правая часть полученного равенства: для вычисления e^0.1 формируем запрос, в котором указываем полученный выше ряд, количество его членов и значение аргумента, для которого вычисляется значение функции



Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.
Посетите страницу Как поддержать наш сайт?
Ранее было рассмотрено, как разложить функцию в степенной ряд. Разложение функций в ряд нам понадобится, чтобы продемонстрировать, как выполняются приближенные вычисления значений функций с помощью степенных рядов.
Например, вычислим приближенное значение e^0.1. Подобные задачи легко решаются без калькулятора, если использовать разложение функции в степенной ряд.
Сначала следует получить разложение функции e^x в степенной ряд. Для этого используем уже известный нам запрос:
exp(x) series representation

Сначала следует получить разложение функции e^x в степенной ряд. Для этого используем уже известный нам запрос:
exp(x) series representation

Далее понадобится правая часть полученного равенства: для вычисления e^0.1 формируем запрос, в котором указываем полученный выше ряд, количество его членов и значение аргумента, для которого вычисляется значение функции

Для повышения точности приближенных вычислений достаточно увеличить количество членов ряда, как в следующем примере:

Поскольку, при вычислении приближенного значения функции с помощью степенного ряда речь, по-сути, идет о вычислении суммы некоторой конечной числовой последовательности, то в указанной выше конструкции запроса sum можно заменить на series - результат будет практически тот же самый:
series x^k/k!, k=0..9, x=0.1
series x^k/k!, k=0..9, x=0.1

Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.
Посетите страницу Как поддержать наш сайт?