Как найти наибольшее и наименьшее значение функции f(x,y,z) в пространственной области Ω

В двух предыдущих статьях о решении основных математических задач на условный экстремум с помощью Вольфрам Альфа было рассмотрено: как найти наибольшее и наименьшее значение функции f(x) на отрезке [a; b]; как найти наибольшее и наименьшее значение функции f(x,y) в плоской области D.

Продолжая тему, рассмотрим, как найти наибольшее и наименьшее значение функции f(x, y, z) в пространственной области Ω.

Как и следовало ожидать, Вольфрам Альфа позволяет решать задачи такого типа в более общей постановке, чем в это делается в обычных курсах высшей математики. Например, далее будет рассмотрено: как найти наибольшее и наименьшее значение функции трех переменных в пространственной области, на поверхности в пространстве, а также на пространственной линии, заданной общим уравнением (как пересечение двух поверхностей). Возможность, получать и анализировать решения подобных задач не только оправдывает, но и делает весьма целесообразным использование системы Вольфрам Альфа в изучении математических дисциплин.

Начнем с традиционной постановки задачи, и рассмотрим, как найти наибольшее и наименьшее значение функции f(x, y, z) в пространственной области Ω ограниченной некоторой поверхностью или несколькими поверхностями, т.е. в области, заданной неравенством или системой неравенств с тремя переменными.
В качестве примера, найдем наибольшее значение функции u=xy/z в области, ограниченной эллипсоидом x^2-2x+2y^2-8y+4z^2-16z+24=0. Кстати, Вольфрам Альфа дает возможность наглядно представить такие поверхности:

image of x^2-2x+2y^2-8y+4z^2-16z+24=0



Теперь с помощью запроса maximize найдем наибольшее значение функции u=xy/z во внутренней области данного эллипсоида:

maximize xy/z in x^2-2x+2y^2-8y+4z^2-16z+24<=0




Как найти наибольшее и наименьшее значение функции f(x,y) в плоской области D

Найти наибольшее и наименьшее значение функции f(x,y) в плоской области D - еще одна задача на условный экстремум  из числа тех, которые изучаются в курсе высшей математики.
Существуют варианты этой задачи: когда область D задана неравенством, системой неравенств, как плоская линия или множество точек на плоскости, возможно, заданных, как точки пересечения нескольких плоских линий (совокупностью или системой уравнений).

Как известно, задачи на условный экстремум в  Вольфрам Альфа решаются с помощью запросов minimizemaximize и extrema, к которым дополнительно присоединяются условия, определяющие заданную область. В этом состоит общий подход к решению подобных задач.

Первый, наиболее простой вариант этой задачи - найти наибольшее значение функции двух переменных f(x,y) в плоской области D, заданной одним неравенством, решается в  Вольфрам Альфа с помощью запроса maximize:

maximize x^2 sin(y) over 4x^2-y-1<=0



ShareThis